skip to main content


Search for: All records

Creators/Authors contains: "Boggs, Matthew L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Analysis of patterns of faulting and hydrogeology, stratigraphic and sedimentologic studies, and luminescence dating of aeolian deposits in China Lake basin provide new perspectives on the origins and development of Late Holocene dunes and sand ramps in the seismically active Indian Wells Valley of eastern California. Aeolian dune and sand sheet deposits were sourced from alluvial material derived from granitic rocks of the south-eastern Sierra Nevada and are concentrated in areas with sand-stabilizing phreatophyte vegetation influenced by high groundwater levels along the active oblique-normal Little Lake and Paxton Ranch faults, which locally form barriers to groundwater flow. Three episodes of sand accumulation are recognized (2.1 ± 0.1 to 2.0 ± 0.1 ka, 1.8 ± 0.2 to 1.6 ± 0.2 ka, and 1.2 ± 0.1 to 0.9 ± 0.1 ka) during conditions in which sediment supplied to the basin during periods of enhanced rainfall and runoff was subsequently reworked by wind into dunes and sand ramps at the transition to more arid periods. Understanding the role tectonics plays in influencing the hydrogeology of seismically active lake basins provides insights to accurately interpret landscape evolution and any inferences made on past hydroclimate variability in a region. 
    more » « less
  2. Abstract Surface rupture from the 2019 Ridgecrest earthquake sequence, initially associated with the Mw 6.4 foreshock, occurred on 4 July on a ∼17  km long, northeast–southwest-oriented, left-lateral zone of faulting. Following the Mw 7.1 mainshock on 5 July (local time), extensive northwest–southeast-oriented, right-lateral faulting was then also mapped along a ∼50  km long zone of faults, including subparallel splays in several areas. The largest slip was observed in the epicentral area and crossing the dry lakebed of China Lake to the southeast. Surface fault rupture mapping by a large team, reported elsewhere, was used to guide the airborne data acquisition reported here. Rapid rupture mapping allowed for accurate and efficient flight line planning for the high-resolution light detection and ranging (lidar) and aerial photography. Flight line planning trade-offs were considered to allocate the medium (25 pulses per square meter [ppsm]) and high-resolution (80 ppsm) lidar data collection polygons. The National Center for Airborne Laser Mapping acquired the airborne imagery with a Titan multispectral lidar system and Digital Modular Aerial Camera (DiMAC) aerial digital camera, and U.S. Geological Survey acquired Global Positioning System ground control data. This effort required extensive coordination with the Navy as much of the airborne data acquisition occurred within their restricted airspace at the China Lake ranges. 
    more » « less